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Hematopoiesis is a dynamic process of the continuous production of diverse blood cell types to meet the body’s physiological
demands and involves complex regulation of multiple cellular mechanisms in hematopoietic stem cells, including proliferation,
self-renewal, differentiation, and apoptosis. Disruption of the hematopoietic system is known to cause various hematological
disorders such as myelosuppression. -ere is growing evidence on the beneficial effects of herbal medicines on hematopoiesis;
however, their mechanism of action remains unclear. In this study, we conducted a network pharmacological-based investigation
of the system-level mechanisms underlying the hematopoietic activity of Samul-tang, which is an herbal formula consisting of four
herbal medicines, includingAngelicae Gigantis Radix, Rehmanniae Radix Preparata, Paeoniae Radix Alba, and Cnidii Rhizoma. In
silico analysis of the absorption-distribution-metabolism-excretion model identified 16 active phytochemical compounds
contained in Samul-tang that may target 158 genes/proteins associated with myelosuppression to exert pharmacological effects.
Functional enrichment analysis suggested that the targets of Samul-tang were significantly enriched in multiple pathways closely
related to the hematopoiesis and myelosuppression development, including the PI3K-Akt, MAPK, IL-17, TNF, FoxO, HIF-1, NF-
kappa B, and p53 signaling pathways. Our study provides novel evidence regarding the system-level mechanisms underlying the
hematopoiesis-promoting effect of herbal medicines for hematological disorder treatment.

1. Introduction

Hematopoiesis refers to the process of development of
immature precursor cells into various mature and functional
blood cells, which initiates from the self-renewing multi-
potent hematopoietic stem cells (HSCs) [1, 2].-is biological
process involves accurate coordination of cellular prolifer-
ation, differentiation, and survival of progenitor cells to
maintain hematopoietic homeostasis modulated by the ac-
tivity of various cytokines, growth factors, and key regula-
tory factors, as well as the complex interactions between
hematopoietic cells, tissues, and organs [1, 2]. However,
hematopoietic homeostasis disruption caused by various
reasons, including anticancer therapies (e.g., chemotherapy
and radiotherapy), myeloid malignancies, nutritional

deficiencies, or viral infection, may lead to the development
of hematological disorders (HDs) such as myelosuppression
[3–5]. Myelosuppression is a pathophysiological condition
characterized by reduced bone marrow ability to produce
sufficient amounts of blood cells (e.g., erythrocytes, leuko-
cytes, and thrombocytes), which results in immunodefi-
ciency, anemia, leukocytopenia, neutropenia, and
thrombocytopenia. [3–5]. Symptoms of myelosuppression
include fatigue, headache, fever, infection, bruising, short-
ness of breath, excessive bleeding, pain, and diarrhea, which
might affect the quality of life and could be life-threatening if
not effectively managed [4–9]. -e current pharmacological
strategies for treating myelosuppression involve the ad-
ministration of erythropoietin (EPO), granulocyte colony-
stimulating factor (G-CSF), and granulocyte-macrophage
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colony-stimulating factor (GM-CSF) [10–12]; however, they
have been reported to cause unfavorable side effects such as
bone and muscle pains, fever, flushing, and nausea [13, 14].
-is indicates the need to develop therapies for effective HD
amelioration with improved safety. Herbal medicines, which
are characterized by multicomponents, multitarget, and
multipathway pharmacological mechanisms [15–17], have
attracted considerable attention and are recognized as ef-
fective therapeutic agents for the myelosuppression allevi-
ation; further, they have fewer side effects than conventional
therapies [18–24]. -ere is growing evidence on the bene-
ficial effects of various herbal medicines in terms of pro-
motion and enhancement of hematopoiesis in vitro and in
vivo [25–33].

Samul-tang (Si-wu-tang; SMT) is an herbal formula
comprising four herbal medicines, including Angelicae
Gigantis Radix (Angelica gigas; AGR), Rehmanniae Radix
Preparata (Rehmannia glutinosa; RRP), Paeoniae Radix Alba
(Paeonia lactiflora; PRA), and Cnidii Rhizoma (Cnidium
officinale; CR) [34–36]. It is commonly used to treat various
HDs and related symptoms such as anemia [37], dysmen-
orrhea [38–40], chemotherapy-induced myelosuppression
[41, 42], and menstrual disorders [43]. Previous studies have
reported that the hematopoietic effects of SMTpartly involve
the modulation of cellular processes in bone marrow cells,
HSCs, and blood cells (e.g., erythrocytes, leukocytes, and
thrombocytes), as well as the activities of key hematopoietic
factors (e.g., EPO, G-CSF, interleukins (ILs), and interferon-
(IFN-) c) [42, 44–46]. However, the system-level molecular
therapeutic mechanisms of SMT are yet to be fully
elucidated.

Network pharmacology is an interdisciplinary science
that aims to uncover the pathophysiological mechanisms
underlying various diseases and their treatment strategies at
a system-level by integrating biomedicine, pharmacology,
systems biology, network biology, computational science,
and other related scientific fields [16, 47, 48]. -is inter-
disciplinary approach has been shown to be useful for
discovering active compounds contained in herbal drugs
and their corresponding potential targets, and investigating
the therapeutic mechanisms that involve complex interac-
tions between multiple compounds and targets, which may
facilitate the exploration of the pharmacological properties
of herbal medicines [47, 48]. In this study, we conducted a
network pharmacology-based investigation of the system-
level molecular mechanism underlying the hematopoietic
activity of SMT.

2. Materials and Methods

2.1. Investigation of Chemical Compounds Contained in SMT.
We retrieved the chemical compounds present in the four
herbal medicines that constitute SMT (i.e., AGR, RRP, PRA,
and CR) from traditional Chinese medicine (TCM)-related
databases, including the Traditional Chinese Medicine
Systems Pharmacology (TCMSP) database, Traditional
Chinese Medicine Integrated Database (TCMID), and Herb
Ingredients’ Targets (HIT) database [49–52]. Regarding
AGR, we first explored the biochemical constituents of

Angelicae Sinensis Radix, a commonly used herbal medicine
in China that belongs to the Angelicae species, using the
aforementioned TCM-related databases, and combined
those with the reported major compounds of AGR such as
marmesin, lomatin, and decursin [53–55]. Chemical com-
pounds not contained in AGR, including isoeugenol, stig-
masterol, and 4-octanone, were excluded from the
integrated data based on previous studies [53–55].

2.2. Exploration of Active Compounds of SMT. To investigate
the potential bioactive chemical compounds in SMT, we
explored the absorption, distribution, metabolism, and ex-
cretion (ADME) properties of each individual phyto-
chemical compound present in the four herbal constituents
of SMT. In this study, we assessed the three commonly used
ADME-related parameters (oral bioavailability (OB), Caco-2
permeability, and drug-likeness (DL)) for each compound
[52]. OB indicates the fraction of an ingested dose of a given
drug that crosses the gastrointestinal epithelium, enters the
systemic circulation, and becomes available for distribution
to internal tissues and organs [52, 56]. Caco-2 permeability
is used to assess the absorption capacity of drug molecules
and chemical compounds in the intestines based on their
passage rate through the Caco-2 human colon epithelial
cancer cell line [52, 57–59]. Notably, Caco-2 cells are
commonly used as a model for evaluating the intestinal
absorption capacity of biochemical compounds since they
have morphologic features similar to those of human in-
testinal epithelial cells [57–59]. Generally, compounds with
Caco-2 permeability<− 0.4 are regarded as impermeable in
the small intestinal epithelium [60, 61]. DL is a key quali-
tative criterion used in drug design to determine candidate
chemical components that may be used as drugs based on
their structural and pharmacokinetic characteristics [52, 62].
Based on previous studies, we regarded chemical com-
pounds with OB≥ 30%, Caco-2 permeability ≥− 0.4, and
DL≥ 0.18 as pharmacologically active [52, 63, 64].

2.3. Investigation of the Targets of Active Compounds in SMT.
We investigated human target genes/proteins that interact
with active phytochemical compounds in SMT using the
Search Tool for Interactions of Chemicals (STITCH) 5 [65],
Similarity Ensemble Approach (SEA) [66], Swis-
sTargetPrediction [67, 68], and PharmMapper [69]. Com-
putational modeling methods, including systematic drug
targeting tool (SysDt) [70] and weighted ensemble similarity
(WES) algorithm [71], were also employed for target
identification as descried previously [72–78]. Subsequently,
we confirmed detailed information regarding the targets,
including their scientific name, relevant gene/protein ID,
and organism, and further standardized the targets using
Uniprot [79]. -e myelosuppression-associated human
genes/proteins were surveyed using diverse databases, in-
cluding Online Mendelian Inheritance in Man (OMIM)
[80], -erapeutic Target Database (TTD) [81], GeneCards
[82], DrugBank [83], Pharmacogenomics Knowledge for
Personalized Medicine (PharmGKB) [84], DisGeNET [85],
Human Genome Epidemiology (HuGE) Navigator [86], and
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-e Comparative Toxicogenomics Database (CTD) [87] by
using search terms for various myelosuppression-related
disorders, including “anemia,” “leukopenia,” “neutropenia,”
“thrombocytopenia,” “lymphopenia,” “granulocytopenia,”
and “agranulocytosis, with the search species limited to
“Homo sapiens”.

2.4. Construction of SMT-Associated Networks. -e herb-
compound (H-C) and compound-target (C-T) networks
were constructed by linking the herbal medicines with their
active compounds and the active compounds with their
corresponding targets, respectively. -e target-pathway
(T-P) network was built by linking the targets with their
associated signaling pathways. All networks were visualized
using Cytoscape software (version 3.7.1) [88]. -e target
location network was generated based on the analysis of gene
expression data of various hematopoietic tissues and organs
obtained from -e Human Protein Atlas [89] and BioGPS
databases [90]; this network was generated by linking the
target to the corresponding tissues and organs where it was
analyzed to be specifically expressed using previously de-
scribed procedures [91–98]. -e protein-protein interaction
(PPI) network was constructed using the STRING database
(version 11.0) [99] and interactions with highest confidence
scores (≥0.9) were selected for further analysis. In the
network, nodes represent the herbal medicines, active
phytochemical compounds, targets, or signaling pathways
while edges represent the interactions between the nodes
[100]. -e degree of a node refers to the number of con-
nections it has to other nodes in the network [100].

2.5. Functional EnrichmentAnalysis. Functional enrichment
analysis of SMT-targeted genes or proteins was conducted
using g:Profiler [101], which is an efficient web server-based
tool for the functional profiling of a given list of genes or
proteins, and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [102].

3. Results

-e pharmacological mechanisms of SMTwere investigated
based on the network pharmacology perspective as follows
(Figure 1). First, we extensively surveyed the chemical
compounds contained in the four herbal medicines that
comprise SMT using various TCM-related databases
(Figure 1). Next, we assessed ADME parameters, such as OB,
Caco-2 cell permeability, and DL, for each individual
chemical compound to identify potential bioactive com-
pounds (Figure 1). Subsequently, we determined potential
targets of the active chemical compounds by exploring the
protein-chemical interactions using relevant databases and
conducted functional enrichment analysis of the targets
(Figure 1). Furthermore, we merged comprehensive infor-
mation regarding SMT into the H-C, C-T, T-P, and target
location networks and investigated its pharmacological
properties based on network pharmacology analysis
(Figure 1).

3.1. Chemical Compounds of SMT. We investigated the
chemical compounds contained in the four herbal medicines
(i.e., AGR, RRP, PRA, and CR) that comprise SMT from a
number of TCM-related databases (e.g., TCMSP, TCMID,
and HIT). Consequently, we obtained 126, 76, 85, and 189
compounds for AGR, RRP, PRA, and CR, respectively, and
identified 440 compounds after duplicate removal (Sup-
plementary Table S1).

3.2. Investigation of the Active Phytochemical Compounds of
SMT. In silico ADME models have been widely used to
investigate active phytochemical compounds that may
possess therapeutic properties [52, 62]. To determine the
potential active compounds of SMT, we evaluated the
ADME parameters (i.e., OB, Caco-2 permeability, and DL)
of each individual compound contained in the four herbal
medicines comprising the herbal formula. As previously
described, we considered compounds with OB≥30%, Caco-
2 permeability ≥− 0.4, and DL≥0.18 as pharmacologically
active [63, 64]. Moreover, we considered some compounds
that did not meet the aforementioned criteria as active
components due to their high amount and pharmacological
activity. Collectively, 18 active compounds were retrieved for
SMT (Supplementary Table S2).

3.3. Identification of the Targets of Active Phytochemical
Compounds in SMT. To identify the potential therapeutic
targets of SMT, we employed an in silico approach to assess
the biological interactions between the active phytochemical
compounds and human genes/proteins using STITCH 5
[65], SEA [66], SwissTargetPrediction [67, 68], and
PharmMapper [69]. Computational modeling methods such
as SysDt [70] and WES algorithm [71] were also employed
for target identification as descried previously [72–78].
Hence, a total of 230 targets were obtained for the 16 active
phytochemical compounds in SMT (Supplementary
Table S3). Note that no potential pharmacological targets
were identified for the case of two active compounds (i.e.,
11alpha,12alpha-epoxy-3beta-23-dihydroxy-30-norolean-20-
en-28,12beta-olide and Paeoniflorin_qt).

3.4. Network-Based Analysis of the Pharmacological Mecha-
nisms of SMT. To understand the “multicomponents,
multitarget, and multipathway” pharmacological mecha-
nisms of SMT, we constructed an herb-compound-target
(H-C-T) network by linking the herbal medicines with the
active phytochemical compounds and the active compounds
with their potential targets (Figure 2). -e H-C-T network
for SMT was composed of 250 nodes and 393 edges, in-
cluding the 4 herbal medicines, 16 active compounds, and
230 targets (Figure 2). Furthermore, for network-based
investigation of the system-level therapeutic properties of
SMT, we built a C-T network comprised of 173 nodes and
274 edges by linking the active compounds with their
myelosuppression-related targets (Figure 3 and Supple-
mentary Table S3). Of note, none of the targets associated
with myelosuppression showed potential interactions with
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the active compound Senkyunone.-e active phytochemical
compounds kaempferol (degree = 73), stigmasterol
(degree = 34), β-sitosterol (degree = 31), and (+)-catechin
(degree = 25) had the largest number of connections with the
myelosuppression-related targets (Figure 3), which indi-
cated them as the potential primary active compounds re-
sponsible for the hematopoietic activity of SMT. Moreover,
53 targets had two or more interactions with the active
phytochemical compounds (Figure 3), which demonstrates
the multicompound, multitarget pharmacological charac-
teristic of herbal medicines, including SMT.

To investigate the underlying relationship between the
targets interacting with the active ingredients in SMT, we built
a PPI network comprised of 123 nodes and 333 edges for the
myelosuppression-associated SMT targets (Figure 4). -e
centralization and heterogeneity of the PPI network were 0.411
and 2.249, respectively, which suggested that the network may
contain hubs, nodes with a large number of interactions
[63, 100, 103–105]. Here, a node was determined to be a hub if
its degree is greater than or equal to twice the average node
degree of the network [106, 107]. Notably, hub nodes have
been reported to function as important regulators in a variety
of biological processes [108, 109]. Among the myelosup-
pression-related targets of SMT, AKT1 (degree = 21), TNF
(degree = 21), MAPK14 (degree = 19), RELA (degree = 17),
JUN (degree = 16), HSP90AA1 (degree = 16), RXRA
(degree = 16), CTNNB1 (degree = 15), NR3C1 (degree = 15),

ESR1 (degree = 15), MAPK8 (degree = 14), NCOA2 (degree =
13), AR (degree= 13), EGFR (degree = 13), CXCL8 (degree =
12), CYP3A4 (degree = 11), CYP1A1 (degree = 11), and
PRKACA (degree = 11) were found to be hub nodes, sug-
gesting that they may play key roles in the hematopoietic
activities of SMT (Figure 4). Previous studies have reported a
close association between these targets and hematopoiesis or
myelosuppression development. For instance, AKT1, TNF,
RELA, β-catenin (encoded by CTNNB1), ESR1, and AR have
been reported to serve as important regulators that coordinate
HSC function [110–115]. -e p38 (encoded by the MAPK14)
cascade controls the quiescence and expansion of HSCs, which
are crucial processes for maintaining hematopoietic homeo-
stasis [116–122]. -e p38, JNK1 (encoded by MAPK8), and
c-JUN (encoded by JUN) are essential for erythropoiesis
regulation, which is the biological process whereby hemato-
poietic tissues in the bone marrow produce erythrocytes by
modulating proliferation, apoptosis, and differentiation of
erythroid cells [123–126]. EGFR promotes HSC regeneration
and function after radiotherapy-induced myelosuppressive
injury [127]. -e cytokine CXCL8 (also known as IL-8) has
been reported to stimulate HSC mobilization to exert a ra-
dioprotective effect [128].

To understand the therapeutic effects of SMT at the
tissue- and organ-level, we generated a target location
network based on the gene expression data for individual
myelosuppression-associated SMT targets across various
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Figure 1: A schematic diagram representing the workflow of the network pharmacology-based investigation of the pharmacological
mechanisms of SMT.
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tissues and organs, which were identified from -e Human
Protein Atlas [88] and BioGPS databases [90] and analyzed
as previously described [91–98] (Figure 5; see Materials and
Methods). Consequently, we found that the targets were
expressed in various hematopoietic tissues and organs
[129, 130], including the liver (degree = 144), bone marrow
(degree = 137), spleen (degree = 116), lymph nodes
(degree = 113), and blood (degree = 100) (Figure 5), which
suggests the systematic mechanism of action responsible for
the pharmacological effects of SMT. Furthermore, all the
myelosuppression-associated SMT targets (except ADH1C,
AKR1B10, CTNNB1, and CYP17A1) were expressed in two
or more tissues and organs, implying that they are closely
related to hematopoietic regulation (Figure 5).

Taken together, our findings demonstrate the pharma-
cological mechanism of action of SMT at a complex net-
work-level.

3.5. Functional Enrichment Analysis of the SMT-Associated
Network. To explore the functional roles of the myelosup-
pression-associated targets of SMT, we conducted gene
ontology (GO) enrichment analysis of the targets. We found
significant enrichment of the targets in GO terms associated
with the regulation of diverse biological processes such as
hemopoiesis, cell proliferation, cell differentiation, cell cycle
process, cell migration, cell apoptosis, immune response,
response to iron binding, and inflammation (Supplementary

Figure 2: -e herb-compound-target network of SMT. Green hexagons and red rectangles indicate the four herbal medicines comprising
SMT and their 16 active chemical compounds, respectively. Ovals indicate the 230 targets of the active compounds in SMT, while those
closely related to myelosuppression are colored in blue.
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Figure S1), which supports the pharmacological mecha-
nisms of SMT hematopoietic activity.

-e hematopoietic system is known to be tightly con-
trolled through the precise coordination of various key sig-
naling pathways; further, aberrant regulation of the
hematopoiesis-associated pathways could cause various HDs
[131–138]. To investigate the pathway-level mechanisms of
SMT, we performed KEGG pathway enrichment analysis of its
myelosuppression-related targets (Figure 6 and Supplemen-
tary Figures S1 and S2). As a result, we found that the targets
have relatively large number of connections with the “PI3K-
Akt signaling pathway” (degree� 23), “MAPK signaling
pathway” (degree� 19), “IL-17 signaling pathway” (degree�

16), “TNF signaling pathway” (degree� 15), “Ras signaling
pathway” (degree� 15), “HIF-1 signaling pathway” (degree�

12), “FoxO signaling pathway” (degree� 12), “Apoptosis”
(degree� 12), “Cellular senescence” (degree� 12), “Toll-like
receptor signaling pathway” (degree� 11), “NF-kappa B sig-
naling pathway” (degree� 10), “-17 cell differentiation”
(degree� 10), “p53 signaling pathway” (degree� 9), “T cell
receptor signaling pathway” (degree� 9), “VEGF signaling
pathway” (degree� 8), and “ErbB signaling pathway”
(degree� 8) (Figure 6 and Supplementary Figures S1 and S2).
A substantial body of research has shown that these highly
connected signaling pathways may play important roles in
hematopoietic regulation and HD pathogenesis. -e PI3K-
Akt,MAPK, Ras, FoxO,HIF-1, Toll-like receptor, NF-kappa B,
and VEGF pathways are crucial for the functional modulation
of the hematopoietic system; further, their aberrant regulation

may contribute to HD development [111, 123, 139–163]. -e
TNF signaling pathway has been reported as a key regulator
for the hematopoietic processes by coordinating the HSC
function [110, 131, 164, 165]. -e p53 signaling pathway-
dependent complex interplay between cell cycle control, se-
nescence, and apoptosis is closely involved in the modulation
of HSC function and hematopoietic homeostasis [166–171].
Activation of IL-17 (a pro-inflammatory cytokine produced by
distinct cluster of differentiation 4+ [CD4+] T helper 17 [-17]
cells)-associated pathway stimulates granulopoiesis by in-
ducing the proliferation of bonemarrow CD34+ cells and their
differentiation into granulocytes; moreover, IL-17 inhibition
might impair hematopoietic recovery and deteriorate mye-
lotoxicity caused by radiation injury [172–182].

We further investigated the functional relationship of
the myelosuppression-associated targets of SMT using
GeneMANIA [183], a web server for investigating and
analyzing functional interactions between multiple genes
and proteins based on comprehensive biological data
integration. -e GeneMANIA analysis indicated that
among the targets, 40.62% and 29.88% were predicted to
be co-expressed and to have physical interactions, re-
spectively (Supplementary Figure S3), which suggested a
similarity of biological functions and activities exerted by
the targets.

Collectively, our findings indicate that SMTmight exert
its therapeutic activities by modulating multiple myelo-
suppression-associated signaling pathways and relevant
cellular processes.

Figure 3:-e compound-target network of SMT. Red rectangles and blue ovals indicate the 16 active chemical compounds in SMTand their
158 myelosuppression-associated targets, respectively.
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4. Discussion

Hematopoiesis is a dynamic developmental process that
involves the complex regulation of multiple cellular
mechanisms in HSCs, including proliferation, self-renewal,
differentiation, and apoptosis, to generate a sufficient
number of blood cells required to maintain homeostasis of
human physiological functions [1, 2]. Impairment and
dysregulation of the hematopoietic system might contribute
to the development of various HDs, including myelosup-
pression [3–5]. -ere has been increasing attention toward
herbal medicines as therapeutic agents for HDs given their
effective hematopoietic activities and less side effects
[18–23]. In this study, we explored the system-level phar-
macological mechanisms underlying the hematopoietic ef-
fects of SMT by employing a network pharmacology
approach [47, 184]. -e following are our key findings: (i) 16

potentially active phytochemical compounds present in
SMTmay interact with 158myelosuppression-related targets
to exhibit therapeutic activities; (ii) GO enrichment analysis
demonstrated that the targets of the active compounds in
SMT were involved in diverse hematopoiesis-associated
biological processes such as cell proliferation, cell differ-
entiation, cell cycle process, cell migration, cell apoptosis,
immune response, response to iron binding, inflammation,
and hemopoiesis; (iii) the myelosuppression-associated
targets of SMT were significantly enriched in various
pathways, including the PI3K-Akt, MAPK, IL-17, TNF,
FoxO, HIF-1, NF-kappa B, and p53 signaling pathways,
which are associated with the hematopoiesis and HD
development.

SMT is comprised of four herbal medicines (i.e., AGR,
RRP, PRA, and CR) containing 16 active phytochemical
compounds that interact with 158 myelosuppression-related

Figure 4: -e protein-protein interaction network for myelosuppression-associated targets of SMT. Blue ovals indicate the myelosup-
pression-associated targets of the active chemical compounds in SMT.

Evidence-Based Complementary and Alternative Medicine 7



targets as investigated by the network pharmacological
approach. -ese herbal and chemical constituents of SMT
have been reported to improve hematopoietic function, and
therefore alleviate myelosuppression. AGR and PRA have
been reported to ameliorate immunosuppression and he-
matopoietic dysfunction induced by cyclophosphamide
treatment, which is a bone marrow-suppressive cytotoxic
alkylating agent [185, 186]. RRP, β-sitosterol, and kaemp-
ferol are known to possess hematopoietic and immuno-
modulatory properties in vitro and in vivo [187–191].
(+)-catechin stimulates the proliferation of bone marrow
cells and thereby exerts protective effects against myelo-
suppression induced by chemotherapeutic agents in mice
[192]. Moreover, paeoniflorin has a hematopoietic activity
and promotes the recovery of bone marrow function in

radiotherapy-induced myelosuppressed mice via the upre-
gulation of G-CSF and GM-CSF [193]. Taken together, these
previous findings support the hematopoietic and immu-
nomodulatory effects of the herbal and chemical constitu-
ents of SMT.

Previous experimental studies have demonstrated the
hematopoietic role of SMT. For instance, SMT has been
reported to stimulate spleen colony formation and to sup-
press radiation- and chemotherapeutic agent-induced he-
matopoietic cell injury, thereby exerting a hematopoiesis-
promoting and myeloprotective effect [42, 194–197]. SMT
treatment has also been reported to increase the number of
peripheral blood cells and to enhance hematopoietic gene
expression, including EPO, G-CSF, CD34, and NF-kappa B,
in the bone marrow of the blood-deficiency mice model

Figure 5:-e target location network for myelosuppression-associated targets SMT. Pink octagons represent tissues and organs, while blue
ovals represent the myelosuppression-associated targets of the active chemical compounds in SMT.
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[44, 196, 198–201]. Furthermore, SMT has been shown to
increase the amount of erythrocytes and leukocytes as well as
the concentration of hemoglobin and hematocrit in blood,
and promote the proliferation, cell cycle progression, and
differentiation of bone marrow cells [202, 203]. T cell-me-
diated immunity was decreased in mice injected with anti-
tumor drugs, which was improved by the SMT adminis-
tration [204]. Further experimental studies are warranted to
confirm the therapeutic properties of SMT indicated in this
study, which might promote the development of effective
herbal medicine-based therapies for treatment of
myelosuppression.

5. Conclusions

In this study, we explored the system-level pharmacological
properties of SMT. Network pharmacology analysis inves-
tigated 16 potential active phytochemical compounds of
SMT that may interact with 158 myelosuppression-

associated targets to exert therapeutic effects. -e targets
were involved in a variety of hematopoiesis-associated bi-
ological processes such as cell proliferation, cell differenti-
ation, cell cycle process, cell migration, cell apoptosis,
immune response, inflammation, response to iron binding,
and hemopoiesis. We further found that the targets of SMT
were enriched in various signaling pathways related to the
hematopoiesis and myelosuppression development, in-
cluding the PI3K-Akt, MAPK, IL-17, TNF, FoxO, HIF-1,
NF-kappa B, and p53 signaling pathways. In conclusion, our
study provides a novel insight into the synergistic and poly-
pharmacological action mechanisms of herbal medicines for
the HD treatment.

Abbreviations

ADME: Absorption, distribution, metabolism, and
excretion

AGR: Angelicae gigantis radix

Figure 6: -e herb-compound-target-pathway network of SMT. Green hexagons and red rectangles represent the four herbal medicines
comprising SMT and their 16 active chemical compounds, respectively. Blue ovals indicate the myelosuppression-associated targets of the
active compounds while orange diamonds indicate the signaling pathways enriched with the corresponding targets.
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CYP3A4: Cytochrome P450 family 3 subfamily A

member 4
CD34: Cluster of differentiation 34
CD4: Cluster of differentiation 4
DL: Drug-likeness
EGFR: Epidermal growth factor receptor
EPO: Erythropoietin
ESRA: Estrogen receptor alpha
FoxO: Forkhead box protein O
G-CSF: Granulocyte-colony-stimulating factor
GO: Gene ontology
GM-CSF: Granulocyte-macrophage colony-stimulating

factor
H-C: Herb-compound
H-C-T: Herb-target-pathway
HD: Hematological disorder
HIF-1: Hypoxia-inducible factor 1
HIT: Herb Ingredients’ Targets
HSC: Hematopoietic stem cell
HSP90AA1: Heat shock protein 90 alpha family class A

member 1
HuGE
Navigator:

Human Genome Epidemiology Navigator

IL: Interleukin
IFN: Interferon
KEGG: Kyoto Encyclopedia of Genes and Genomes
MAPK: Mitogen-activated protein kinase
NCOA2: Nuclear receptor coactivator 2
NF-kappa B: Nuclear factor kappa-light-chain-enhancer

of activated B cells
NR3C1: Nuclear receptor subfamily 3 group C

member 1
OB: Oral bioavailability
OMIM: Online Mendelian Inheritance in Man
PharmGKB: Pharmacogenomics Knowledge for

Personalized Medicine
PI3K: Phosphoinositide 3-kinase
PPI: Protein-protein interaction
PRA: Paeoniae radix alba
PRKACA: Protein kinase cAMP-activated catalytic

subunit alpha
RELA: v-rel avian reticuloendotheliosis viral

oncogene homolog A
RRP: Rehmanniae radix preparata
RXRA: Retinoid X receptor alpha
SEA: Similarity Ensemble Approach
SMT: Samul-tang
STITCH: Search Tool for Interactions of Chemicals
SysDT: Systematic drug targeting tool
TCM: Traditional Chinese medicine

TCMID: Traditional Chinese Medicine Integrated
Database

TCMSP: Traditional Chinese Medicine Systems
Pharmacology

-17 cells: T helper 17 cells
TTD: -erapeutic Target Database
TNF: Tumor necrosis factor
T-P: Target-pathway
WES
algorithm:

Weighted ensemble similarity algorithm.
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